Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0385520190320040131
Analytical Science & Technology
2019 Volume.32 No. 4 p.131 ~ p.138
Investigation of physical characteristics for Al2O3:C dosimeter using LM-OSL
Kim Myung-Jin

Lee Young-Ju
Kim Ki-Bum
Hong Duk-Geun
Abstract
This paper reports results on the physical properties of a powder type of Al2O3:C commonly used as a luminescence dosimeter using the LM-OSL technique. On the analysis with the general order kinetics model, the LM-OSL signal measured appeared to be composed of three components (fast, medium, slow) showing the largest area in the medium component. The photoionization cross sections of three components were distributed between 10?19~10?21 cm2. The values of the thermal assistance energy were evaluated the largest in slow component and the smallest in fast component, which indicates the electrons trapped in defects attributed to slow component should be the most sensitive to thermal vibration among three components. In illumination to blue light, the fast component showed a rapid linear decay and completely disappeared after light exposure time of about 5 s. The medium component decayed with two exponential elements but the slow component did not observed any noticeable change until light exposure time of 40 s. In a dose response study, all components exhibited a linear behaviour up to approximately 10 Gy.
KEYWORD
Al2O3:C, LM-OSL, photoionization cross-section, thermal assistance energy, optical sensitivity, radiation response
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)